Combinatorial Geometry

Combinatorial Geometry
Author :
Publisher :
Total Pages : 484
Release :
ISBN-10 : 146191406X
ISBN-13 : 9781461914068
Rating : 4/5 (6X Downloads)

Synopsis Combinatorial Geometry by : Linfan Mao

Combinatorial Geometry

Combinatorial Geometry
Author :
Publisher : John Wiley & Sons
Total Pages : 376
Release :
ISBN-10 : 9781118031360
ISBN-13 : 1118031369
Rating : 4/5 (60 Downloads)

Synopsis Combinatorial Geometry by : János Pach

A complete, self-contained introduction to a powerful and resurgingmathematical discipline . Combinatorial Geometry presents andexplains with complete proofs some of the most important resultsand methods of this relatively young mathematical discipline,started by Minkowski, Fejes Toth, Rogers, and Erd???s. Nearly halfthe results presented in this book were discovered over the pasttwenty years, and most have never before appeared in any monograph.Combinatorial Geometry will be of particular interest tomathematicians, computer scientists, physicists, and materialsscientists interested in computational geometry, robotics, sceneanalysis, and computer-aided design. It is also a superb textbook,complete with end-of-chapter problems and hints to their solutionsthat help students clarify their understanding and test theirmastery of the material. Topics covered include: * Geometric number theory * Packing and covering with congruent convex disks * Extremal graph and hypergraph theory * Distribution of distances among finitely many points * Epsilon-nets and Vapnik--Chervonenkis dimension * Geometric graph theory * Geometric discrepancy theory * And much more

Geometric Combinatorics

Geometric Combinatorics
Author :
Publisher : American Mathematical Soc.
Total Pages : 705
Release :
ISBN-10 : 9780821837368
ISBN-13 : 0821837362
Rating : 4/5 (68 Downloads)

Synopsis Geometric Combinatorics by : Ezra Miller

Geometric combinatorics describes a wide area of mathematics that is primarily the study of geometric objects and their combinatorial structure. This text is a compilation of expository articles at the interface between combinatorics and geometry.

Combinatorial Convexity and Algebraic Geometry

Combinatorial Convexity and Algebraic Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 378
Release :
ISBN-10 : 9781461240440
ISBN-13 : 1461240441
Rating : 4/5 (40 Downloads)

Synopsis Combinatorial Convexity and Algebraic Geometry by : Günter Ewald

The book is an introduction to the theory of convex polytopes and polyhedral sets, to algebraic geometry, and to the connections between these fields, known as the theory of toric varieties. The first part of the book covers the theory of polytopes and provides large parts of the mathematical background of linear optimization and of the geometrical aspects in computer science. The second part introduces toric varieties in an elementary way.

Combinatorial and Computational Geometry

Combinatorial and Computational Geometry
Author :
Publisher : Cambridge University Press
Total Pages : 640
Release :
ISBN-10 : 0521848628
ISBN-13 : 9780521848626
Rating : 4/5 (28 Downloads)

Synopsis Combinatorial and Computational Geometry by : Jacob E. Goodman

This 2005 book deals with interest topics in Discrete and Algorithmic aspects of Geometry.

Labeled Graph — A Mathematical Element

Labeled Graph — A Mathematical Element
Author :
Publisher : Infinite Study
Total Pages : 35
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Synopsis Labeled Graph — A Mathematical Element by : Linfan MAO

The universality of contradiction and connection of things in nature implies that a thing is nothing else but a labeled topological graph GL with a labeling map L.

International Journal of Mathematical Combinatorics, Volume 1, 2012

International Journal of Mathematical Combinatorics, Volume 1, 2012
Author :
Publisher : Infinite Study
Total Pages : 120
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Synopsis International Journal of Mathematical Combinatorics, Volume 1, 2012 by : Linfan Mao

Topics in detail to be covered are: Smarandache multi-spaces with applications to other sciences, such as those of algebraic multi-systems, multi-metric spaces; Smarandache geometries; Differential Geometry; Geometry on manifolds; Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration; Low Dimensional Topology; Differential Topology; Topology of Manifolds; Geometrical aspects of Mathematical Physics and Relations with Manifold Topology; Applications of Smarandache multi-spaces to theoretical physics; Applications of Combinatorics to mathematics and theoretical physics; Mathematical theory on gravitational fields; Mathematical theory on parallel universes; Other applications of Smarandache multi-space and combinatorics.

MATHEMATICAL REALITY

MATHEMATICAL REALITY
Author :
Publisher : Infinite Study
Total Pages : 507
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Synopsis MATHEMATICAL REALITY by : Linfan MAO

A thing is complex, and hybrid with other things sometimes. Then, what is the reality of a thing? The reality of a thing is its state of existed, exists, or will exist in the world, independent on the understanding of human beings, which implies that the reality holds on by human beings maybe local or gradual, not the reality of a thing. Hence, to hold on the reality of things is the main objective of science in the history of human development.

Mathematics, the Continuous or the Discrete Which is Better to Reality of Things

Mathematics, the Continuous or the Discrete Which is Better to Reality of Things
Author :
Publisher : Infinite Study
Total Pages : 26
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Synopsis Mathematics, the Continuous or the Discrete Which is Better to Reality of Things by : Linfan MAO

There are 2 contradictory views on our world, i.e., continuous or discrete, which results in that only partially reality of a thing T can be understood by one of continuous or discrete mathematics because of the universality of contradiction and the connection of things in the nature, just as the philosophical meaning in the story of the blind men with an elephant.