Clinical Prediction Models

Clinical Prediction Models
Author :
Publisher : Springer
Total Pages : 574
Release :
ISBN-10 : 9783030163990
ISBN-13 : 3030163997
Rating : 4/5 (90 Downloads)

Synopsis Clinical Prediction Models by : Ewout W. Steyerberg

The second edition of this volume provides insight and practical illustrations on how modern statistical concepts and regression methods can be applied in medical prediction problems, including diagnostic and prognostic outcomes. Many advances have been made in statistical approaches towards outcome prediction, but a sensible strategy is needed for model development, validation, and updating, such that prediction models can better support medical practice. There is an increasing need for personalized evidence-based medicine that uses an individualized approach to medical decision-making. In this Big Data era, there is expanded access to large volumes of routinely collected data and an increased number of applications for prediction models, such as targeted early detection of disease and individualized approaches to diagnostic testing and treatment. Clinical Prediction Models presents a practical checklist that needs to be considered for development of a valid prediction model. Steps include preliminary considerations such as dealing with missing values; coding of predictors; selection of main effects and interactions for a multivariable model; estimation of model parameters with shrinkage methods and incorporation of external data; evaluation of performance and usefulness; internal validation; and presentation formatting. The text also addresses common issues that make prediction models suboptimal, such as small sample sizes, exaggerated claims, and poor generalizability. The text is primarily intended for clinical epidemiologists and biostatisticians. Including many case studies and publicly available R code and data sets, the book is also appropriate as a textbook for a graduate course on predictive modeling in diagnosis and prognosis. While practical in nature, the book also provides a philosophical perspective on data analysis in medicine that goes beyond predictive modeling. Updates to this new and expanded edition include: • A discussion of Big Data and its implications for the design of prediction models • Machine learning issues • More simulations with missing ‘y’ values • Extended discussion on between-cohort heterogeneity • Description of ShinyApp • Updated LASSO illustration • New case studies

Fundamentals of Machine Learning for Predictive Data Analytics, second edition

Fundamentals of Machine Learning for Predictive Data Analytics, second edition
Author :
Publisher : MIT Press
Total Pages : 853
Release :
ISBN-10 : 9780262361101
ISBN-13 : 0262361108
Rating : 4/5 (01 Downloads)

Synopsis Fundamentals of Machine Learning for Predictive Data Analytics, second edition by : John D. Kelleher

The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.

Applied Predictive Modeling

Applied Predictive Modeling
Author :
Publisher : Springer Science & Business Media
Total Pages : 595
Release :
ISBN-10 : 9781461468493
ISBN-13 : 1461468493
Rating : 4/5 (93 Downloads)

Synopsis Applied Predictive Modeling by : Max Kuhn

Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.

A Pragmatic Legal Expert System

A Pragmatic Legal Expert System
Author :
Publisher : Dartmouth (Ashgate)
Total Pages : 406
Release :
ISBN-10 : 9781855217393
ISBN-13 : 1855217392
Rating : 4/5 (93 Downloads)

Synopsis A Pragmatic Legal Expert System by : James Popple

Most legal expert systems attempt to implement complex models of legal reasoning. This book argues that a complex model is unnecessary. It advocates a simpler, pragmatic approach in which the utility of a legal expert system is evaluated by reference, not to the extent to which it simulates a lawyer's approach to a legal problem, but to the quality of its predictions and of its arguments. The author describes the development of a legal expert system, called SHYSTER, which takes a pragmatic approach to case law. He discusses the testing of SHYSTER in four different and disparate areas of case law, and draws conclusions about the advantages and limitations of this approach to legal expert system development. Chapter 1 presents a critical analysis of previous work of relevance to the development of legal expert systems. Chapter 2 explains the pragmatic approach that was adopted in the development of SHYSTER. The implementation of SHYSTER is detailed using examples in chapter 3. Chapter 4 describes the testing of SHYSTER, and conclusions are drawn from those tests in chapter 5. Examples of SHYSTER's output are provided in appendices.

Prediction, Learning, and Games

Prediction, Learning, and Games
Author :
Publisher : Cambridge University Press
Total Pages : 4
Release :
ISBN-10 : 9781139454827
ISBN-13 : 113945482X
Rating : 4/5 (27 Downloads)

Synopsis Prediction, Learning, and Games by : Nicolo Cesa-Bianchi

This important text and reference for researchers and students in machine learning, game theory, statistics and information theory offers a comprehensive treatment of the problem of predicting individual sequences. Unlike standard statistical approaches to forecasting, prediction of individual sequences does not impose any probabilistic assumption on the data-generating mechanism. Yet, prediction algorithms can be constructed that work well for all possible sequences, in the sense that their performance is always nearly as good as the best forecasting strategy in a given reference class. The central theme is the model of prediction using expert advice, a general framework within which many related problems can be cast and discussed. Repeated game playing, adaptive data compression, sequential investment in the stock market, sequential pattern analysis, and several other problems are viewed as instances of the experts' framework and analyzed from a common nonstochastic standpoint that often reveals new and intriguing connections.

Combining Pattern Classifiers

Combining Pattern Classifiers
Author :
Publisher : John Wiley & Sons
Total Pages : 372
Release :
ISBN-10 : 9780471660255
ISBN-13 : 0471660256
Rating : 4/5 (55 Downloads)

Synopsis Combining Pattern Classifiers by : Ludmila I. Kuncheva

Covering pattern classification methods, Combining Classifiers: Ideas and Methods focuses on the important and widely studied issue of how to combine several classifiers together in order to achieve improved recognition performance. It is one of the first books to provide unified, coherent, and expansive coverage of the topic and as such will be welcomed by those involved in the area. With case studies that bring the text alive and demonstrate 'real-world' applications it is destined to become essential reading.

Research Anthology on Recent Trends, Tools, and Implications of Computer Programming

Research Anthology on Recent Trends, Tools, and Implications of Computer Programming
Author :
Publisher : IGI Global
Total Pages : 2069
Release :
ISBN-10 : 9781799830177
ISBN-13 : 1799830179
Rating : 4/5 (77 Downloads)

Synopsis Research Anthology on Recent Trends, Tools, and Implications of Computer Programming by : Management Association, Information Resources

Programming has become a significant part of connecting theoretical development and scientific application computation. Computer programs and processes that take into account the goals and needs of the user meet with the greatest success, so it behooves software engineers to consider the human element inherent in every line of code they write. Research Anthology on Recent Trends, Tools, and Implications of Computer Programming is a vital reference source that examines the latest scholarly material on trends, techniques, and uses of various programming applications and examines the benefits and challenges of these computational developments. Highlighting a range of topics such as coding standards, software engineering, and computer systems development, this multi-volume book is ideally designed for programmers, computer scientists, software developers, analysts, security experts, IoT software programmers, computer and software engineers, students, professionals, and researchers.

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability
Author :
Publisher : National Academies Press
Total Pages : 192
Release :
ISBN-10 : 9780309151832
ISBN-13 : 030915183X
Rating : 4/5 (32 Downloads)

Synopsis Assessment of Intraseasonal to Interannual Climate Prediction and Predictability by : National Research Council

More accurate forecasts of climate conditions over time periods of weeks to a few years could help people plan agricultural activities, mitigate drought, and manage energy resources, amongst other activities; however, current forecast systems have limited ability on these time- scales. Models for such climate forecasts must take into account complex interactions among the ocean, atmosphere, and land surface. Such processes can be difficult to represent realistically. To improve the quality of forecasts, this book makes recommendations about the development of the tools used in forecasting and about specific research goals for improving understanding of sources of predictability. To improve the accessibility of these forecasts to decision-makers and researchers, this book also suggests best practices to improve how forecasts are made and disseminated.

Against Prediction

Against Prediction
Author :
Publisher : University of Chicago Press
Total Pages : 345
Release :
ISBN-10 : 9780226315997
ISBN-13 : 0226315991
Rating : 4/5 (97 Downloads)

Synopsis Against Prediction by : Bernard E. Harcourt

From random security checks at airports to the use of risk assessment in sentencing, actuarial methods are being used more than ever to determine whom law enforcement officials target and punish. And with the exception of racial profiling on our highways and streets, most people favor these methods because they believe they’re a more cost-effective way to fight crime. In Against Prediction, Bernard E. Harcourt challenges this growing reliance on actuarial methods. These prediction tools, he demonstrates, may in fact increase the overall amount of crime in society, depending on the relative responsiveness of the profiled populations to heightened security. They may also aggravate the difficulties that minorities already have obtaining work, education, and a better quality of life—thus perpetuating the pattern of criminal behavior. Ultimately, Harcourt shows how the perceived success of actuarial methods has begun to distort our very conception of just punishment and to obscure alternate visions of social order. In place of the actuarial, he proposes instead a turn to randomization in punishment and policing. The presumption, Harcourt concludes, should be against prediction.