Bioelectrochemical Systems

Bioelectrochemical Systems
Author :
Publisher : IWA Publishing
Total Pages : 525
Release :
ISBN-10 : 9781843392330
ISBN-13 : 184339233X
Rating : 4/5 (30 Downloads)

Synopsis Bioelectrochemical Systems by : Korneel Rabaey

In the context of wastewater treatment, Bioelectrochemical Systems (BESs) have gained considerable interest in the past few years, and several BES processes are on the brink of application to this area. This book, written by a large number of world experts in the different sub-topics, describes the different aspects and processes relevant to their development. Bioelectrochemical Systems (BESs) use micro-organisms to catalyze an oxidation and/or reduction reaction at an anodic and cathodic electrode respectively. Briefly, at an anode oxidation of organic and inorganic electron donors can occur. Prime examples of such electron donors are waste organics and sulfides. At the cathode, an electron acceptor such as oxygen or nitrate can be reduced. The anode and the cathode are connected through an electrical circuit. If electrical power is harvested from this circuit, the system is called a Microbial Fuel Cell; if electrical power is invested, the system is called a Microbial Electrolysis Cell. The overall framework of bio-energy and bio-fuels is discussed. A number of chapters discuss the basics – microbiology, microbial ecology, electrochemistry, technology and materials development. The book continues by highlighting the plurality of processes based on BES technology already in existence, going from wastewater based reactors to sediment based bio-batteries. The integration of BESs into existing water or process lines is discussed. Finally, an outlook is provided of how BES will fit within the emerging biorefinery area.

Bioelectrochemical Systems

Bioelectrochemical Systems
Author :
Publisher : Springer Nature
Total Pages : 401
Release :
ISBN-10 : 9789811568688
ISBN-13 : 9811568685
Rating : 4/5 (88 Downloads)

Synopsis Bioelectrochemical Systems by : Prasun Kumar

This book is the second in a two-volume set devoted to bioelectrochemical systems (BESs) and the opportunities that they may offer in providing a green solution to growing energy demands worldwide. While the first volume explains principles and processes, in this volume established research professionals shed light on how this technology can be used to generate high-value chemicals and energy using organic wastes. Bioelectricity is generated in microbial fuel cells (MFCs) under oxygen-depleted conditions, where microbial bioconversion reactions transform organic wastes into electrons. Dedicated chapters focus on MFCs and state of the art advancements as well as current limitations. In addition, the book covers the use of microbial biofilm- and algae-based bioelectrochemical systems for bioremediation and co-generation of valuable chemicals. A thorough review of the performance of this technology and its possible industrial applications is presented. The book is designed for a broad audience, including undergraduates, postgraduates, energy researchers/scientists, policymakers, and anyone else interested in the latest developments in this field.

Bioelectrochemical Systems

Bioelectrochemical Systems
Author :
Publisher : Springer Nature
Total Pages : 333
Release :
ISBN-10 : 9789811568725
ISBN-13 : 9811568723
Rating : 4/5 (25 Downloads)

Synopsis Bioelectrochemical Systems by : Prasun Kumar

This book is the first in a two-volume set devoted to bioelectrochemical systems (BESs) and the opportunities that they may offer in providing a green solution to growing energy demands worldwide. In this first volume, established research professionals explain the underlying principles and processes of BESs, providing a thorough introduction to these systems before proceeding to address the roles of cathode catalysts and biocatalysts, biofilms, heterotrophic denitrification, and nanotechnology approaches. This volume forms a sound foundation for understanding the potential industrial applications of this technology, which include in particular the generation of high-value chemicals and energy using organic wastes. These applications are the focus of the second volume, where readers will find up-to-date information on microbial fuel cells and the use of microbial biofilm- and algae-based bioelectrochemical systems for bioremediation and co-generation of valuable chemicals. The book is designed for a broad audience, including undergraduates, postgraduates, energy researchers/scientists, policymakers, and anyone else interested in the latest developments in this field.

Biomass, Biofuels, Biochemicals

Biomass, Biofuels, Biochemicals
Author :
Publisher : Elsevier
Total Pages : 1148
Release :
ISBN-10 : 9780444640536
ISBN-13 : 0444640533
Rating : 4/5 (36 Downloads)

Synopsis Biomass, Biofuels, Biochemicals by : S.Venkata Mohan

Biomass, Biofuels, Biochemicals encompasses the potential of microbial electrochemical technologies, delineating their role in developing a technology for abating environmental crisis and enabling transformation to a sustainable future. The book provides new and futuristic methods for bioelectrogenesis, multiple product synthesis, waste remediation strategies, and electromicrobiology generation which are widely essential to individuals from industry, marketing, activists, writers, etc. In addition, it provides essential knowledge transfer to researchers, students and science enthusiasts on Microbial Electrochemical Technologies, detailing the functional mechanisms employed, various operational configurations, influencing factors governing the reaction progress and integration strategies. With these key topics and features, the book generates interest among a wide range of people related to renewable energy generation and sustainable environmental research. - Depicts the holistic view of the multiple applications of Microbial Electrochemical Technologies (METs) in a unified comprehensible manner - Provides strategic integrations of MET with various bioprocesses that are essential in establishing a circular biorefinery - Widens the scope of the existing technologies, giving up-to date, state-of-the-art information and knowledge on research and commercialization - Contains topics that are lucid, providing interdisciplinary knowledge on the environment, molecular biology, engineering, biotechnology, microbiology and economic aspects - Includes more than 75 illustrations, figures, diagrams, flow charts, and tables for further study

Biofilms in Bioelectrochemical Systems

Biofilms in Bioelectrochemical Systems
Author :
Publisher : John Wiley & Sons
Total Pages : 429
Release :
ISBN-10 : 9781119097389
ISBN-13 : 111909738X
Rating : 4/5 (89 Downloads)

Synopsis Biofilms in Bioelectrochemical Systems by : Haluk Beyenal

This book serves as a manual of research techniques for electrochemically active biofilm research. Using examples from real biofilm research to illustrate the techniques used for electrochemically active biofilms, this book is of most use to researchers and educators studying microbial fuel cell and bioelectrochemical systems. The book emphasizes the theoretical principles of bioelectrochemistry, experimental procedures and tools useful in quantifying electron transfer processes in biofilms, and mathematical modeling of electron transfer in biofilms. It is divided into three sections: Biofilms: Microbiology and microbioelectrochemistry - Focuses on the microbiologic aspect of electrochemically active biofilms and details the key points of biofilm preparation and electrochemical measurement Electrochemical techniques to study electron transfer processes - Focuses on electrochemical characterization and data interpretation, highlighting key factors in the experimental procedures that affect reproducibility Applications - Focuses on applications of electrochemically active biofilms and development of custom tools to study electrochemically active biofilms. Chapters detail how to build the reactors for applications and measure parameters

Microbial Fuel Cell

Microbial Fuel Cell
Author :
Publisher : Springer
Total Pages : 508
Release :
ISBN-10 : 9783319667935
ISBN-13 : 3319667939
Rating : 4/5 (35 Downloads)

Synopsis Microbial Fuel Cell by : Debabrata Das

This book represents a novel attempt to describe microbial fuel cells (MFCs) as a renewable energy source derived from organic wastes. Bioelectricity is usually produced through MFCs in oxygen-deficient environments, where a series of microorganisms convert the complex wastes into electrons via liquefaction through a cascade of enzymes in a bioelectrochemical process. The book provides a detailed description of MFC technologies and their applications, along with the theories underlying the electron transfer mechanisms, the biochemistry and the microbiology involved, and the material characteristics of the anode, cathode and separator. It is intended for a broad audience, mainly undergraduates, postgraduates, energy researchers, scientists working in industry and at research organizations, energy specialists, policymakers, and anyone else interested in the latest developments concerning MFCs.

Microbial Electrochemical Technologies

Microbial Electrochemical Technologies
Author :
Publisher : CRC Press
Total Pages : 497
Release :
ISBN-10 : 9780429944994
ISBN-13 : 0429944993
Rating : 4/5 (94 Downloads)

Synopsis Microbial Electrochemical Technologies by : Sonia M. Tiquia-Arashiro

This book encompasses the most updated and recent account of research and implementation of Microbial Electrochemical Technologies (METs) from pioneers and experienced researchers in the field who have been working on the interface between electrochemistry and microbiology/biotechnology for many years. It provides a holistic view of the METs, detailing the functional mechanisms, operational configurations, influencing factors governing the reaction process and integration strategies. The book not only provides historical perspectives of the technology and its evolution over the years but also the most recent examples of up-scaling and near future commercialization, making it a must-read for researchers, students, industry practitioners and science enthusiasts. Key Features: Introduces novel technologies that can impact the future infrastructure at the water-energy nexus. Outlines methodologies development and application of microbial electrochemical technologies and details out the illustrations of microbial and electrochemical concepts. Reviews applications across a wide variety of scales, from power generation in the laboratory to approaches. Discusses techniques such as molecular biology and mathematical modeling; the future development of this promising technology; and the role of the system components for the implementation of bioelectrochemical technologies for practical utility. Explores key challenges for implementing these systems and compares them to similar renewable energy technologies, including their efficiency, scalability, system lifetimes, and reliability.

Functionalized Nanomaterials Based Devices for Environmental Applications

Functionalized Nanomaterials Based Devices for Environmental Applications
Author :
Publisher : Elsevier
Total Pages : 414
Release :
ISBN-10 : 9780128232705
ISBN-13 : 0128232706
Rating : 4/5 (05 Downloads)

Synopsis Functionalized Nanomaterials Based Devices for Environmental Applications by : Sudheesh K. Shukla

Environmental devices help in monitoring the collection of one or more measurements that are used to access the status of an environment. Today, environmental monitoring and analytical methods are among the most rapidly developing branches of analysis. The functionalization of nanomaterials in the field of environmental science has increasing importance with regards to the fabrication of devices. Functionalized nanomaterials reformulate new materials and advanced characteristics for improved application in comparison to old fashion materials and open an opportunity for the development of devices for introducing new technology and techniques for monitoring environmental challenges. The monitoring of these environmental challenges in advances have direct impact on health and sustainability. Functionalized nanomaterials have different mechanical, absorption, optical or electrical properties than original nanomaterials. In fact, major utilization of nanomaterials occurs in their functionalized forms, which are very different from the parent material. This handbook provides an overview of the different state-of-the-art materials, devices and environmental applications of functionalized nanomaterials. In addition, the information offers a platform for ongoing research in the field of environmental science and device fabrication. The main objective of this book is to cover the major areas focusing on the functionalization of nanomaterials, device fabrication along with different techniques and environmental applications of functionalized nanomaterials-based devices. This is an important reference source for materials scientists, engineers and environmental scientsts who are looking to increase their understanding of how functionalized nanomaterial-based devices are being used for environmental monitoring applications. - Helps the reader to understand the basic principles of functionalization of nanomaterials - Highlights fabrication and characterization methods for functionalized nanomaterials-based environmental monitoring devices - Assesses the major challenges of creating devices using functionalized nanomaterials on a mass scale

Scaling Up of Microbial Electrochemical Systems

Scaling Up of Microbial Electrochemical Systems
Author :
Publisher : Elsevier
Total Pages : 514
Release :
ISBN-10 : 9780323907668
ISBN-13 : 0323907660
Rating : 4/5 (68 Downloads)

Synopsis Scaling Up of Microbial Electrochemical Systems by : Dipak Ashok Jadhav

Scaling Up of Microbial Electrochemical Systems: From Reality to Scalability is the first book of its kind to focus on scaling up of microbial electrochemical systems (MES) and the unique challenges faced when moving towards practical applications using this technology. This book emphasizes an understanding of the current limitations of MES technology and suggests a way forward towards onsite applications of MES for practical use. It includes the basics of MES as well as success stories and case studies of MES in the direction of practical applications. This book will give a new direction to energy researchers, scientists and policymakers working on field applications of microbial electrochemical systems—microbial fuel cells, microbial electrolysis cells, microbial electrosynthesis cells, and more. - Promotes the advancement of microbial electrochemical systems, from lab scale to field applications - Illustrates the challenges of scaling up using successive case studies - Provides the basics of MES technology to help deepen understanding of the subject - Addresses lifecycle analysis of MES technology to allow comparison with other conventional methods

Functional Electrodes For Enzymatic And Microbial Electrochemical Systems

Functional Electrodes For Enzymatic And Microbial Electrochemical Systems
Author :
Publisher : World Scientific
Total Pages : 658
Release :
ISBN-10 : 9781786343550
ISBN-13 : 178634355X
Rating : 4/5 (50 Downloads)

Synopsis Functional Electrodes For Enzymatic And Microbial Electrochemical Systems by : Nicolas Brun

Bioelectrochemical Systems (BESs) are innovative and sustainable devices. They combine biological and electrochemical processes to engineer sensors, treat wastewater and/or produce electricity, fuel or high-value chemicals. In BESs, scientists have managed to incorporate biological catalysts, i.e. enzymes and/or microorganisms, and make them work in advanced electrochemical cells. BESs operate under mild conditions — at close to ambient temperature and pressure and at circumneutral pH — and represent a sustainable alternative to precious metal-based systems. Incorporating biological catalysts into devices while maintaining their activity and achieving electrical communication with electrode surfaces is a critical challenge when trying to advance the field of BESs.From implantable enzymatic biosensors to microbial electrosynthesis, and from laboratory-scale systems and fundamental studies to marketed devices, this book provides a comprehensive overview of recent advances related to functional electrodes for BESs. Suitable for researchers and graduate students of chemistry, biochemistry, materials science and environmental science and technology.