NBS Special Publication

NBS Special Publication
Author :
Publisher :
Total Pages : 124
Release :
ISBN-10 : MINN:31951002871542U
ISBN-13 :
Rating : 4/5 (2U Downloads)

Synopsis NBS Special Publication by :

Handbook of Advanced Plasma Processing Techniques

Handbook of Advanced Plasma Processing Techniques
Author :
Publisher : Springer Science & Business Media
Total Pages : 664
Release :
ISBN-10 : 9783642569890
ISBN-13 : 3642569897
Rating : 4/5 (90 Downloads)

Synopsis Handbook of Advanced Plasma Processing Techniques by : R.J. Shul

Pattern transfer by dry etching and plasma-enhanced chemical vapor de position are two of the cornerstone techniques for modern integrated cir cuit fabrication. The success of these methods has also sparked interest in their application to other techniques, such as surface-micromachined sen sors, read/write heads for data storage and magnetic random access memory (MRAM). The extremely complex chemistry and physics of plasmas and their interactions with the exposed surfaces of semiconductors and other materi als is often overlooked at the manufacturing stage. In this case, the process is optimized by an informed "trial-and-error" approach which relies heavily on design-of-experiment techniques and the intuition of the process engineer. The need for regular cleaning of plasma reactors to remove built-up reaction or precursor gas products adds an extra degree of complexity because the interaction of the reactive species in the plasma with the reactor walls can also have a strong effect on the number of these species available for etching or deposition. Since the microelectronics industry depends on having high process yields at each step of the fabrication process, it is imperative that a full understanding of plasma etching and deposition techniques be achieved.

Reference Data on Atoms, Molecules, and Ions

Reference Data on Atoms, Molecules, and Ions
Author :
Publisher : Springer Science & Business Media
Total Pages : 475
Release :
ISBN-10 : 9783642820489
ISBN-13 : 3642820484
Rating : 4/5 (89 Downloads)

Synopsis Reference Data on Atoms, Molecules, and Ions by : A.A. Radzig

This reference book contains information about the structure and properties of atomic and molecular particles, as well as some of the nuclear parameters. It includes data which can be of use when studying atomic and molecular processes in the physics of gases, chemistry of gases and gas optics, in plasma physics and plasma chemistry, in physical chemistry and radiation chemistry, in geophysics, astrophysics, solid-state physics and a variety of cross-discipli nary fields of science and technology. Our aim was to collect carefully selected and estimated numerical values for a wide circle of microscopic parameters in a relatively "not thick" book. These values are of constant use in the work of practical investigators. In essence, the book represents a substantially revised and extended edi tion of our reference book published in Russian in 1980. Two main reasons made it necessary to rework the material. On the one hand, a great deal of new high-quality data has appeared in the past few years and furthermore we have enlisted many sources of information previously inaccessible to us. On the other hand, we have tried to insert extensive information on new, rapidly progressing branches of physical research, such as multiply charged ions, Rydberg atoms, van der Waals and excimer molecules, complex ions, etc. All this brings us to the very edge of studies being carried out in the field.

Theoretical Atomic Physics

Theoretical Atomic Physics
Author :
Publisher : Springer
Total Pages : 656
Release :
ISBN-10 : 9783319477695
ISBN-13 : 3319477692
Rating : 4/5 (95 Downloads)

Synopsis Theoretical Atomic Physics by : Harald Friedrich

This expanded and updated well-established textbook contains an advanced presentationof quantum mechanics adapted to the requirements of modern atomic physics. Itincludes topics of current interest such as semiclassical theory, chaos, atom optics andBose-Einstein condensation in atomic gases. In order to facilitate the consolidationof the material covered, various problems are included, together with completesolutions. The emphasis on theory enables the reader to appreciate the fundamentalassumptions underlying standard theoretical constructs and to embark on independentresearch projects. The fourth edition of Theoretical Atomic Physics contains anupdated treatment of the sections involving scattering theory and near-thresholdphenomena manifest in the behaviour of cold atoms (and molecules). Special attentionis given to the quantization of weakly bound states just below the continuum thresholdand to low-energy scattering and quantum reflection just above. Particular emphasisis laid on the fundamental differences between long-ranged Coulombic potentialsand shorter-ranged potentials falling off faster than 1/r2 at large distances r. The newsections on tunable near-threshold Feshbach resonances and on scattering in two spatialdimensions also address problems relevant for current and future research in the fieldof cold (and ultra-cold) atoms. Graduate students and researchers will find this book avaluable resource and comprehensive reference alike.

Reference Data on Atomic Physics and Atomic Processes

Reference Data on Atomic Physics and Atomic Processes
Author :
Publisher : Springer Science & Business Media
Total Pages : 180
Release :
ISBN-10 : 9783540793632
ISBN-13 : 3540793631
Rating : 4/5 (32 Downloads)

Synopsis Reference Data on Atomic Physics and Atomic Processes by : Boris M. Smirnov

Each scientist works with certain information and collects it in the course of prof- sional activity. In the same manner, the author collected data for atomic physics and atomic processes. This information was checked in the course of the author’s p- fessional activity and was published in the form of appendices to the corresponding books on atomic and plasma physics. Now it has been decided to publish these data separately. This book contains atomic data and useful information about atomic particles and atomic systems including molecules, nanoclusters, metals and condensed s- tems of elements. It also gives information about atomic processes and transport processes in gases and plasmas. In addition, the book deals with general concepts and simple models for these objects and processes. We give units and conversion factors for them as well as conversion factors for spread formulas of general physics and the physics of atoms, clusters and ionized gases since such formulas are used in professional practice by each scientist of this area.

Methods in Computational Chemistry

Methods in Computational Chemistry
Author :
Publisher : Springer Science & Business Media
Total Pages : 302
Release :
ISBN-10 : 9781461307112
ISBN-13 : 1461307112
Rating : 4/5 (12 Downloads)

Synopsis Methods in Computational Chemistry by : Stephen Wilson

Thisvolume isdevotedtomethodsfor thestudyoftheeffectsofrelativity on theelectronicstructure ofatomsand molecules. The accurate descrip tionofrelativisticeffectsinheavyatomshaslongbeenrecognizedasoneof the central problems ofatomic physics. Contemporary relativistic atomic structure calculations can be performed almost routinely. Recent years have seen agrowinginterestin thestudyoftheeffects ofrelativityon the structureofmolecules. Even for molecularsystemscontainingatoms from thesecondrowoftheperiodictable theenergyassociatedwith relativistic effects is often larger than that arising from electron correlation. For moleculescontainingheavieratoms relativistic effects become increasingly important, andforsystemscontainingveryheavyatomsrelativityisknown todominatemanychemicalproperties. In this volum, one of the pioneers of relativistic atomic structure calculations, Ian P. Grant, providesadetailedsurveyofthecomputational techniquesemployedincontemporarystudiesoftheeffectsofrelativityon atomicstructure. Thisisanareaofresearchinwhichcalculationscanoften lead to a particularly impressive degreeofagreement between theoryand experiment. Furthermore, theseatomicstudies haveprovided manyofthe foundations of a fully relativistic quantum chemistry. However, the spherical symmetry ofatoms allows significantsimplificationsto bemade in their quantum mechanical treatment, simplifications which are not possibleinstudiesofmolecules. Inparticular, as is wellknown from non relativistictheoriesofmolecularelectronicstructure, itisalmostobligatory to invoke the algebraic approximation in molecular work and use finite basis set expansions. The problem of describing relativistic effects in molecules is addressed in Chapter2 by Stephen Wilson. This chapter is devotedtoab initiorelativisticmolecularstructurecalculationsinwhichall electrons are explicitly considered. The problem of induding relativistic effects in molecular studies is also addressed in Chapters3 and 4. In Chapter 3, Odd Gropen describes the use of relativistic effective core ix x Preface potentials in calculations on molecular systems involving heavy atoms. This approach can lead to more tractable algorithms than the methods described in Chapter2 and thus significantly extends the range of applications. The use of semiempirical methods has yielded a wealth of informationabouttheinfluenceofrelativityonthechemistryoftheheavier elements. Thisimportantarea is reviewed inChapter4 by Pekka Pyykk6. Finally, inChapter5, Harry M."

Theory of Chemical Reaction Dynamics

Theory of Chemical Reaction Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 498
Release :
ISBN-10 : 9781402021657
ISBN-13 : 1402021658
Rating : 4/5 (57 Downloads)

Synopsis Theory of Chemical Reaction Dynamics by : Antonio Laganà

Proceedings of the NATO Advanced Research Workshop, held in Balatonföldvár, Hungary, 8-12 June 2003

Atomic and Molecular Spectroscopy

Atomic and Molecular Spectroscopy
Author :
Publisher : Springer Science & Business Media
Total Pages : 601
Release :
ISBN-10 : 9783642981074
ISBN-13 : 3642981070
Rating : 4/5 (74 Downloads)

Synopsis Atomic and Molecular Spectroscopy by : Sune Svanberg

A wide-ranging review of modern spectroscopic techniques such as X-ray, photoelectron, optical and laser spectroscopy, and related techniques. The book focuses on physical principles and the impact of spectroscopy on our understanding of the building blocks of matter, while examining applications to chemical analysis, photochemistry, surface characterization, environmental and medical diagnostics, remote sensing, and astrophysics. This Third Edition includes the most up-to-date developments.