Artificial Intelligence in Medical Imaging

Artificial Intelligence in Medical Imaging
Author :
Publisher : Springer
Total Pages : 369
Release :
ISBN-10 : 9783319948782
ISBN-13 : 3319948784
Rating : 4/5 (82 Downloads)

Synopsis Artificial Intelligence in Medical Imaging by : Erik R. Ranschaert

This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.

Artificial Intelligence in Medical Imaging

Artificial Intelligence in Medical Imaging
Author :
Publisher : CRC Press
Total Pages : 165
Release :
ISBN-10 : 9781000753080
ISBN-13 : 1000753085
Rating : 4/5 (80 Downloads)

Synopsis Artificial Intelligence in Medical Imaging by : Lia Morra

Choice Recommended Title, January 2021 This book, written by authors with more than a decade of experience in the design and development of artificial intelligence (AI) systems in medical imaging, will guide readers in the understanding of one of the most exciting fields today. After an introductory description of classical machine learning techniques, the fundamentals of deep learning are explained in a simple yet comprehensive manner. The book then proceeds with a historical perspective of how medical AI developed in time, detailing which applications triumphed and which failed, from the era of computer aided detection systems on to the current cutting-edge applications in deep learning today, which are starting to exhibit on-par performance with clinical experts. In the last section, the book offers a view on the complexity of the validation of artificial intelligence applications for commercial use, describing the recently introduced concept of software as a medical device, as well as good practices and relevant considerations for training and testing machine learning systems for medical use. Open problematics on the validation for public use of systems which by nature continuously evolve through new data is also explored. The book will be of interest to graduate students in medical physics, biomedical engineering and computer science, in addition to researchers and medical professionals operating in the medical imaging domain, who wish to better understand these technologies and the future of the field. Features: An accessible yet detailed overview of the field Explores a hot and growing topic Provides an interdisciplinary perspective

Medical Imaging

Medical Imaging
Author :
Publisher : CRC Press
Total Pages : 251
Release :
ISBN-10 : 9780429642494
ISBN-13 : 0429642490
Rating : 4/5 (94 Downloads)

Synopsis Medical Imaging by : K.C. Santosh

Winner of the "Outstanding Academic Title" recognition by Choice for the 2020 OAT Awards. The Choice OAT Award represents the highest caliber of scholarly titles that have been reviewed by Choice and conveys the extraordinary recognition of the academic community. The book discusses varied topics pertaining to advanced or up-to-date techniques in medical imaging using artificial intelligence (AI), image recognition (IR) and machine learning (ML) algorithms/techniques. Further, coverage includes analysis of chest radiographs (chest x-rays) via stacked generalization models, TB type detection using slice separation approach, brain tumor image segmentation via deep learning, mammogram mass separation, epileptic seizures, breast ultrasound images, knee joint x-ray images, bone fracture detection and labeling, and diabetic retinopathy. It also reviews 3D imaging in biomedical applications and pathological medical imaging.

AI Innovation in Medical Imaging Diagnostics

AI Innovation in Medical Imaging Diagnostics
Author :
Publisher : IGI Global
Total Pages : 248
Release :
ISBN-10 : 9781799830931
ISBN-13 : 1799830934
Rating : 4/5 (31 Downloads)

Synopsis AI Innovation in Medical Imaging Diagnostics by : Anbarasan, Kalaivani

Recent advancements in the technology of medical imaging, such as CT and MRI scanners, are making it possible to create more detailed 3D and 4D images. These powerful images require vast amounts of digital data to help with the diagnosis of the patient. Artificial intelligence (AI) must play a vital role in supporting with the analysis of this medical imaging data, but it will only be viable as long as healthcare professionals and AI interact to embrace deep thinking platforms such as automation in the identification of diseases in patients. AI Innovation in Medical Imaging Diagnostics is an essential reference source that examines AI applications in medical imaging that can transform hospitals to become more efficient in the management of patient treatment plans through the production of faster imaging and the reduction of radiation dosages through the PET and SPECT imaging modalities. The book also explores how data clusters from these images can be translated into small data packages that can be accessed by healthcare departments to give a real-time insight into patient care and required interventions. Featuring research on topics such as assistive healthcare, cancer detection, and machine learning, this book is ideally designed for healthcare administrators, radiologists, data analysts, computer science professionals, medical imaging specialists, diagnosticians, medical professionals, researchers, and students.

Deep Learning Applications in Medical Imaging

Deep Learning Applications in Medical Imaging
Author :
Publisher : IGI Global
Total Pages : 274
Release :
ISBN-10 : 9781799850724
ISBN-13 : 1799850722
Rating : 4/5 (24 Downloads)

Synopsis Deep Learning Applications in Medical Imaging by : Saxena, Sanjay

Before the modern age of medicine, the chance of surviving a terminal disease such as cancer was minimal at best. After embracing the age of computer-aided medical analysis technologies, however, detecting and preventing individuals from contracting a variety of life-threatening diseases has led to a greater survival percentage and increased the development of algorithmic technologies in healthcare. Deep Learning Applications in Medical Imaging is a pivotal reference source that provides vital research on the application of generating pictorial depictions of the interior of a body for medical intervention and clinical analysis. While highlighting topics such as artificial neural networks, disease prediction, and healthcare analysis, this publication explores image acquisition and pattern recognition as well as the methods of treatment and care. This book is ideally designed for diagnosticians, medical imaging specialists, healthcare professionals, physicians, medical researchers, academicians, and students.

A Radiologist's Introduction to AI and Machine Learning

A Radiologist's Introduction to AI and Machine Learning
Author :
Publisher :
Total Pages : 36
Release :
ISBN-10 : 1092768319
ISBN-13 : 9781092768313
Rating : 4/5 (19 Downloads)

Synopsis A Radiologist's Introduction to AI and Machine Learning by : Leigh Shuman

With all of the news of artificial intelligence and machine learning it can be daunting to find a place to start. This short book is for radiologists, radiology residents and medical students who want to learn the basics. You will need no computer background to read this book.Program directors or professors may use this a tool to introduce AI and ML to trainees.The book will present the difference between artificial intelligence, machine learning and neural networks. You will learn that a neural network is similar to human brains and 'layers' are similar to synapses. Just like the first few years of medical school presented new vocabulary, ML and AI have some particular words that are described simply.There are some similarities between residency training and 'training an algorithm' which will be explained.After reading this book, you will be prepared to read radiology journal articles that showcase AI and ML applications.

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare
Author :
Publisher : Academic Press
Total Pages : 385
Release :
ISBN-10 : 9780128184394
ISBN-13 : 0128184396
Rating : 4/5 (94 Downloads)

Synopsis Artificial Intelligence in Healthcare by : Adam Bohr

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Computational Intelligence in Medical Imaging

Computational Intelligence in Medical Imaging
Author :
Publisher : CRC Press
Total Pages : 512
Release :
ISBN-10 : 9781420060614
ISBN-13 : 1420060619
Rating : 4/5 (14 Downloads)

Synopsis Computational Intelligence in Medical Imaging by : G. Schaefer

CI Techniques & Algorithms for a Variety of Medical Imaging SituationsDocuments recent advances and stimulates further researchA compilation of the latest trends in the field, Computational Intelligence in Medical Imaging: Techniques and Applications explores how intelligent computing can bring enormous benefit to existing technology in medical

Healthcare and Artificial Intelligence

Healthcare and Artificial Intelligence
Author :
Publisher : Springer Nature
Total Pages : 275
Release :
ISBN-10 : 9783030321611
ISBN-13 : 3030321614
Rating : 4/5 (11 Downloads)

Synopsis Healthcare and Artificial Intelligence by : Bernard Nordlinger

This book provides an overview of the role of AI in medicine and, more generally, of issues at the intersection of mathematics, informatics, and medicine. It is intended for AI experts, offering them a valuable retrospective and a global vision for the future, as well as for non-experts who are curious about this timely and important subject. Its goal is to provide clear, objective, and reasonable information on the issues covered, avoiding any fantasies that the topic “AI” might evoke. In addition, the book seeks to provide a broad kaleidoscopic perspective, rather than deep technical details.

Medical Image Analysis

Medical Image Analysis
Author :
Publisher : Academic Press
Total Pages : 700
Release :
ISBN-10 : 9780128136584
ISBN-13 : 0128136588
Rating : 4/5 (84 Downloads)

Synopsis Medical Image Analysis by : Alejandro Frangi

Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing