Applied Algebra and Functional Analysis

Applied Algebra and Functional Analysis
Author :
Publisher : Courier Corporation
Total Pages : 514
Release :
ISBN-10 : 9780486675985
ISBN-13 : 048667598X
Rating : 4/5 (85 Downloads)

Synopsis Applied Algebra and Functional Analysis by : Anthony N. Michel

"A valuable reference." — American Scientist. Excellent graduate-level treatment of set theory, algebra and analysis for applications in engineering and science. Fundamentals, algebraic structures, vector spaces and linear transformations, metric spaces, normed spaces and inner product spaces, linear operators, more. A generous number of exercises have been integrated into the text. 1981 edition.

Applied Number Theory

Applied Number Theory
Author :
Publisher : Springer
Total Pages : 452
Release :
ISBN-10 : 9783319223216
ISBN-13 : 3319223216
Rating : 4/5 (16 Downloads)

Synopsis Applied Number Theory by : Harald Niederreiter

This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas. Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc. Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters 2-5 and offer a glimpse of advanced results that are presented without proofs and require more advanced mathematical skills. In the last chapter they review several further applications of number theory, ranging from check-digit systems to quantum computation and the organization of raster-graphics memory. Upper-level undergraduates, graduates and researchers in the field of number theory will find this book to be a valuable resource.

Applied Algebra

Applied Algebra
Author :
Publisher : CRC Press
Total Pages : 410
Release :
ISBN-10 : 9781439894699
ISBN-13 : 1439894698
Rating : 4/5 (99 Downloads)

Synopsis Applied Algebra by : Darel W. Hardy

Using mathematical tools from number theory and finite fields, Applied Algebra: Codes, Ciphers, and Discrete Algorithms, Second Edition presents practical methods for solving problems in data security and data integrity. It is designed for an applied algebra course for students who have had prior classes in abstract or linear algebra. While the con

Advanced Number Theory with Applications

Advanced Number Theory with Applications
Author :
Publisher : CRC Press
Total Pages : 440
Release :
ISBN-10 : 9781420083293
ISBN-13 : 1420083295
Rating : 4/5 (93 Downloads)

Synopsis Advanced Number Theory with Applications by : Richard A. Mollin

Exploring one of the most dynamic areas of mathematics, Advanced Number Theory with Applications covers a wide range of algebraic, analytic, combinatorial, cryptographic, and geometric aspects of number theory. Written by a recognized leader in algebra and number theory, the book includes a page reference for every citing in the bibliography and mo

Number Theory

Number Theory
Author :
Publisher : CRC Press
Total Pages : 772
Release :
ISBN-10 : 9781000105360
ISBN-13 : 1000105369
Rating : 4/5 (60 Downloads)

Synopsis Number Theory by : Don Redmond

This text provides a detailed introduction to number theory, demonstrating how other areas of mathematics enter into the study of the properties of natural numbers. It contains problem sets within each section and at the end of each chapter to reinforce essential concepts, and includes up-to-date information on divisibility problems, polynomial congruence, the sums of squares and trigonometric sums.;Five or more copies may be ordered by college or university bookstores at a special price, available on application.

Computer Algebra and Polynomials

Computer Algebra and Polynomials
Author :
Publisher : Springer
Total Pages : 222
Release :
ISBN-10 : 9783319150819
ISBN-13 : 3319150812
Rating : 4/5 (19 Downloads)

Synopsis Computer Algebra and Polynomials by : Jaime Gutierrez

Algebra and number theory have always been counted among the most beautiful mathematical areas with deep proofs and elegant results. However, for a long time they were not considered that important in view of the lack of real-life applications. This has dramatically changed: nowadays we find applications of algebra and number theory frequently in our daily life. This book focuses on the theory and algorithms for polynomials over various coefficient domains such as a finite field or ring. The operations on polynomials in the focus are factorization, composition and decomposition, basis computation for modules, etc. Algorithms for such operations on polynomials have always been a central interest in computer algebra, as it combines formal (the variables) and algebraic or numeric (the coefficients) aspects. The papers presented were selected from the Workshop on Computer Algebra and Polynomials, which was held in Linz at the Johann Radon Institute for Computational and Applied Mathematics (RICAM) during November 25-29, 2013, at the occasion of the Special Semester on Applications of Algebra and Number Theory.

Algebraic Groups and Number Theory

Algebraic Groups and Number Theory
Author :
Publisher : Academic Press
Total Pages : 629
Release :
ISBN-10 : 9780080874593
ISBN-13 : 0080874592
Rating : 4/5 (93 Downloads)

Synopsis Algebraic Groups and Number Theory by : Vladimir Platonov

This milestone work on the arithmetic theory of linear algebraic groups is now available in English for the first time. Algebraic Groups and Number Theory provides the first systematic exposition in mathematical literature of the junction of group theory, algebraic geometry, and number theory. The exposition of the topic is built on a synthesis of methods from algebraic geometry, number theory, analysis, and topology, and the result is a systematic overview ofalmost all of the major results of the arithmetic theory of algebraic groups obtained to date.

An Invitation to Arithmetic Geometry

An Invitation to Arithmetic Geometry
Author :
Publisher : American Mathematical Society
Total Pages : 397
Release :
ISBN-10 : 9781470467258
ISBN-13 : 1470467259
Rating : 4/5 (58 Downloads)

Synopsis An Invitation to Arithmetic Geometry by : Dino Lorenzini

Extremely carefully written, masterfully thought out, and skillfully arranged introduction … to the arithmetic of algebraic curves, on the one hand, and to the algebro-geometric aspects of number theory, on the other hand. … an excellent guide for beginners in arithmetic geometry, just as an interesting reference and methodical inspiration for teachers of the subject … a highly welcome addition to the existing literature. —Zentralblatt MATH The interaction between number theory and algebraic geometry has been especially fruitful. In this volume, the author gives a unified presentation of some of the basic tools and concepts in number theory, commutative algebra, and algebraic geometry, and for the first time in a book at this level, brings out the deep analogies between them. The geometric viewpoint is stressed throughout the book. Extensive examples are given to illustrate each new concept, and many interesting exercises are given at the end of each chapter. Most of the important results in the one-dimensional case are proved, including Bombieri's proof of the Riemann Hypothesis for curves over a finite field. While the book is not intended to be an introduction to schemes, the author indicates how many of the geometric notions introduced in the book relate to schemes, which will aid the reader who goes to the next level of this rich subject.

Number Theory

Number Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 549
Release :
ISBN-10 : 9781470452759
ISBN-13 : 1470452758
Rating : 4/5 (59 Downloads)

Synopsis Number Theory by : Róbert Freud

Number Theory is a newly translated and revised edition of the most popular introductory textbook on the subject in Hungary. The book covers the usual topics of introductory number theory: divisibility, primes, Diophantine equations, arithmetic functions, and so on. It also introduces several more advanced topics including congruences of higher degree, algebraic number theory, combinatorial number theory, primality testing, and cryptography. The development is carefully laid out with ample illustrative examples and a treasure trove of beautiful and challenging problems. The exposition is both clear and precise. The book is suitable for both graduate and undergraduate courses with enough material to fill two or more semesters and could be used as a source for independent study and capstone projects. Freud and Gyarmati are well-known mathematicians and mathematical educators in Hungary, and the Hungarian version of this book is legendary there. The authors' personal pedagogical style as a facet of the rich Hungarian tradition shines clearly through. It will inspire and exhilarate readers.

Number Theory

Number Theory
Author :
Publisher : Academic Press
Total Pages : 449
Release :
ISBN-10 : 9780080873329
ISBN-13 : 0080873324
Rating : 4/5 (29 Downloads)

Synopsis Number Theory by :

This book is written for the student in mathematics. Its goal is to give a view of the theory of numbers, of the problems with which this theory deals, and of the methods that are used. We have avoided that style which gives a systematic development of the apparatus and have used instead a freer style, in which the problems and the methods of solution are closely interwoven. We start from concrete problems in number theory. General theories arise as tools for solving these problems. As a rule, these theories are developed sufficiently far so that the reader can see for himself their strength and beauty, and so that he learns to apply them. Most of the questions that are examined in this book are connected with the theory of diophantine equations - that is, with the theory of the solutions in integers of equations in several variables. However, we also consider questions of other types; for example, we derive the theorem of Dirichlet on prime numbers in arithmetic progressions and investigate the growth of the number of solutions of congruences.