Quantum Groups

Quantum Groups
Author :
Publisher : Springer Science & Business Media
Total Pages : 540
Release :
ISBN-10 : 9781461207832
ISBN-13 : 1461207835
Rating : 4/5 (32 Downloads)

Synopsis Quantum Groups by : Christian Kassel

Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.

Quantum Groups and Their Representations

Quantum Groups and Their Representations
Author :
Publisher : Springer Science & Business Media
Total Pages : 568
Release :
ISBN-10 : 9783642608964
ISBN-13 : 3642608965
Rating : 4/5 (64 Downloads)

Synopsis Quantum Groups and Their Representations by : Anatoli Klimyk

This book start with an introduction to quantum groups for the beginner and continues as a textbook for graduate students in physics and in mathematics. It can also be used as a reference by more advanced readers. The authors cover a large but well-chosen variety of subjects from the theory of quantum groups (quantized universal enveloping algebras, quantized algebras of functions) and q-deformed algebras (q-oscillator algebras), their representations and corepresentations, and noncommutative differential calculus. The book is written with potential applications in physics and mathematics in mind. The basic quantum groups and quantum algebras and their representations are given in detail and accompanied by explicit formulas. A number of topics and results from the more advanced general theory are developed and discussed.

Quantum Groups, Quantum Categories and Quantum Field Theory

Quantum Groups, Quantum Categories and Quantum Field Theory
Author :
Publisher : Springer
Total Pages : 438
Release :
ISBN-10 : 9783540476115
ISBN-13 : 3540476113
Rating : 4/5 (15 Downloads)

Synopsis Quantum Groups, Quantum Categories and Quantum Field Theory by : Jürg Fröhlich

This book reviews recent results on low-dimensional quantum field theories and their connection with quantum group theory and the theory of braided, balanced tensor categories. It presents detailed, mathematically precise introductions to these subjects and then continues with new results. Among the main results are a detailed analysis of the representation theory of U (sl ), for q a primitive root of unity, and a semi-simple quotient thereof, a classfication of braided tensor categories generated by an object of q-dimension less than two, and an application of these results to the theory of sectors in algebraic quantum field theory. This clarifies the notion of "quantized symmetries" in quantum fieldtheory. The reader is expected to be familiar with basic notions and resultsin algebra. The book is intended for research mathematicians, mathematical physicists and graduate students.

Introduction to Quantum Groups

Introduction to Quantum Groups
Author :
Publisher : Springer Science & Business Media
Total Pages : 361
Release :
ISBN-10 : 9780817647179
ISBN-13 : 0817647171
Rating : 4/5 (79 Downloads)

Synopsis Introduction to Quantum Groups by : George Lusztig

The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical basis with rather remarkable properties. This book will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists and to theoretical physicists and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the book could also be used as a text book.

Quantum Groups

Quantum Groups
Author :
Publisher : Cambridge University Press
Total Pages : 160
Release :
ISBN-10 : 9781139461443
ISBN-13 : 1139461443
Rating : 4/5 (43 Downloads)

Synopsis Quantum Groups by : Ross Street

Algebra has moved well beyond the topics discussed in standard undergraduate texts on 'modern algebra'. Those books typically dealt with algebraic structures such as groups, rings and fields: still very important concepts! However Quantum Groups: A Path to Current Algebra is written for the reader at ease with at least one such structure and keen to learn algebraic concepts and techniques. A key to understanding these new developments is categorical duality. A quantum group is a vector space with structure. Part of the structure is standard: a multiplication making it an 'algebra'. Another part is not in those standard books at all: a comultiplication, which is dual to multiplication in the precise sense of category theory, making it a 'coalgebra'. While coalgebras, bialgebras and Hopf algebras have been around for half a century, the term 'quantum group', along with revolutionary new examples, was launched by Drinfel'd in 1986.

Lectures on Algebraic Quantum Groups

Lectures on Algebraic Quantum Groups
Author :
Publisher : Springer Science & Business Media
Total Pages : 362
Release :
ISBN-10 : 3764367148
ISBN-13 : 9783764367145
Rating : 4/5 (48 Downloads)

Synopsis Lectures on Algebraic Quantum Groups by : John C Brown

This book consists of an expanded set of lectures on algebraic aspects of quantum groups. It particularly concentrates on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. Large parts of the material are developed in full textbook style, featuring many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof.

Quantum Groups and Noncommutative Geometry

Quantum Groups and Noncommutative Geometry
Author :
Publisher : Springer
Total Pages : 122
Release :
ISBN-10 : 9783319979878
ISBN-13 : 3319979876
Rating : 4/5 (78 Downloads)

Synopsis Quantum Groups and Noncommutative Geometry by : Yuri I. Manin

This textbook presents the second edition of Manin's celebrated 1988 Montreal lectures, which influenced a new generation of researchers in algebra to take up the study of Hopf algebras and quantum groups. In this expanded write-up of those lectures, Manin systematically develops an approach to quantum groups as symmetry objects in noncommutative geometry in contrast to the more deformation-oriented approach due to Faddeev, Drinfeld, and others. This new edition contains an extra chapter by Theo Raedschelders and Michel Van den Bergh, surveying recent work that focuses on the representation theory of a number of bi- and Hopf algebras that were first introduced in Manin's lectures, and have since gained a lot of attention. Emphasis is placed on the Tannaka–Krein formalism, which further strengthens Manin's approach to symmetry and moduli-objects in noncommutative geometry.

Quantum Theory, Groups and Representations

Quantum Theory, Groups and Representations
Author :
Publisher : Springer
Total Pages : 659
Release :
ISBN-10 : 9783319646121
ISBN-13 : 3319646125
Rating : 4/5 (21 Downloads)

Synopsis Quantum Theory, Groups and Representations by : Peter Woit

This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.

A Quantum Groups Primer

A Quantum Groups Primer
Author :
Publisher : Cambridge University Press
Total Pages : 183
Release :
ISBN-10 : 9780521010412
ISBN-13 : 0521010411
Rating : 4/5 (12 Downloads)

Synopsis A Quantum Groups Primer by : Shahn Majid

Self-contained introduction to quantum groups as algebraic objects, suitable as a textbook for graduate courses.

Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: An Algebraic Approach

Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: An Algebraic Approach
Author :
Publisher : Springer Science & Business Media
Total Pages : 314
Release :
ISBN-10 : 9781461541097
ISBN-13 : 1461541093
Rating : 4/5 (97 Downloads)

Synopsis Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: An Algebraic Approach by : L.A. Lambe

Chapter 1 The algebraic prerequisites for the book are covered here and in the appendix. This chapter should be used as reference material and should be consulted as needed. A systematic treatment of algebras, coalgebras, bialgebras, Hopf algebras, and represen tations of these objects to the extent needed for the book is given. The material here not specifically cited can be found for the most part in [Sweedler, 1969] in one form or another, with a few exceptions. A great deal of emphasis is placed on the coalgebra which is the dual of n x n matrices over a field. This is the most basic example of a coalgebra for our purposes and is at the heart of most algebraic constructions described in this book. We have found pointed bialgebras useful in connection with solving the quantum Yang-Baxter equation. For this reason we develop their theory in some detail. The class of examples described in Chapter 6 in connection with the quantum double consists of pointed Hopf algebras. We note the quantized enveloping algebras described Hopf algebras. Thus for many reasons pointed bialgebras are elsewhere are pointed of fundamental interest in the study of the quantum Yang-Baxter equation and objects quantum groups.