Advanced Calculus (Revised Edition)

Advanced Calculus (Revised Edition)
Author :
Publisher : World Scientific Publishing Company
Total Pages : 595
Release :
ISBN-10 : 9789814583954
ISBN-13 : 9814583952
Rating : 4/5 (54 Downloads)

Synopsis Advanced Calculus (Revised Edition) by : Lynn Harold Loomis

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

Advanced Calculus

Advanced Calculus
Author :
Publisher :
Total Pages : 420
Release :
ISBN-10 : UCAL:$B529317
ISBN-13 :
Rating : 4/5 (17 Downloads)

Synopsis Advanced Calculus by : Frederick Shenstone Woods

Advanced Calculus for Applications

Advanced Calculus for Applications
Author :
Publisher : Prentice Hall
Total Pages : 760
Release :
ISBN-10 : UOM:39015018249998
ISBN-13 :
Rating : 4/5 (98 Downloads)

Synopsis Advanced Calculus for Applications by : Francis Begnaud Hildebrand

The text provides advanced undergraduates with the necessary background in advanced calculus topics, providing the foundation for partial differential equations and analysis. Readers of this text should be well-prepared to study from graduate-level texts and publications of similar level. KEY TOPICS: Ordinary Differential Equations; The Laplace Transform; Numerical Methods for Solving Ordinary Differential Equations; Series Solutions of Differential Equations: Special Functions; Boundary-Value Problems and Characteristic-Function Representations; Vector Analysis; Topics in Higher-Dimensional Calculus; Partial Differential Equations; Solutions of Partial Differential Equations of Mathematical Physics; Functions of a Complex Variable; Applications of Analytic Function Theory MARKET: For all readers interested in advanced calculus.

Partial Differential Equations

Partial Differential Equations
Author :
Publisher : American Mathematical Soc.
Total Pages : 778
Release :
ISBN-10 : 9780821849743
ISBN-13 : 0821849743
Rating : 4/5 (43 Downloads)

Synopsis Partial Differential Equations by : Lawrence C. Evans

This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail...Evans' book is evidence of his mastering of the field and the clarity of presentation (Luis Caffarelli, University of Texas) It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ...Every graduate student in analysis should read it. (David Jerison, MIT) I use Partial Differential Equations to prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ...I am very happy with the preparation it provides my students. (Carlos Kenig, University of Chicago) Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ...An outstanding reference for many aspects of the field. (Rafe Mazzeo, Stanford University.

Partial Differential Equations in Action

Partial Differential Equations in Action
Author :
Publisher : Springer
Total Pages : 714
Release :
ISBN-10 : 9783319150932
ISBN-13 : 3319150936
Rating : 4/5 (32 Downloads)

Synopsis Partial Differential Equations in Action by : Sandro Salsa

The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.

Ordinary and Partial Differential Equations

Ordinary and Partial Differential Equations
Author :
Publisher :
Total Pages : 418
Release :
ISBN-10 : 0982406231
ISBN-13 : 9780982406236
Rating : 4/5 (31 Downloads)

Synopsis Ordinary and Partial Differential Equations by : John W. Cain

Differential equations arise in a variety of contexts, some purely theoretical and some of practical interest. As you read this textbook, you will find that the qualitative and quantitative study of differential equations incorporates an elegant blend of linear algebra and advanced calculus. This book is intended for an advanced undergraduate course in differential equations. The reader should have already completed courses in linear algebra, multivariable calculus, and introductory differential equations.

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 447
Release :
ISBN-10 : 9780387216874
ISBN-13 : 0387216871
Rating : 4/5 (74 Downloads)

Synopsis An Introduction to Partial Differential Equations by : Michael Renardy

Partial differential equations are fundamental to the modeling of natural phenomena. The desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians and has inspired such diverse fields as complex function theory, functional analysis, and algebraic topology. This book, meant for a beginning graduate audience, provides a thorough introduction to partial differential equations.

Advanced Calculus for Engineers

Advanced Calculus for Engineers
Author :
Publisher : Martino Fine Books
Total Pages : 610
Release :
ISBN-10 : 1614273987
ISBN-13 : 9781614273981
Rating : 4/5 (87 Downloads)

Synopsis Advanced Calculus for Engineers by : Francis Begnaud Hildebrand

2013 Reprint of 1949 Edition. Exact facsimile of the original edition, not reproduced with Optical Recognition Software. Francis Begnaud Hildebrand (1915-2002) was an American mathematician. He was a Professor of mathematics at the Massachusetts Institute of Technology (MIT) from 1940 until 1984. Hildebrand was known for his many influential textbooks in mathematics and numerical analysis. The big green textbook from these classes (originally "Advanced Calculus for Engineers," later "Advanced Calculus for Applications") was a fixture in engineers' offices for decades.

Partial Differential Equations

Partial Differential Equations
Author :
Publisher : John Wiley & Sons
Total Pages : 467
Release :
ISBN-10 : 9780470054567
ISBN-13 : 0470054565
Rating : 4/5 (67 Downloads)

Synopsis Partial Differential Equations by : Walter A. Strauss

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Partial Differential Equations for Scientists and Engineers

Partial Differential Equations for Scientists and Engineers
Author :
Publisher : Courier Corporation
Total Pages : 450
Release :
ISBN-10 : 9780486134734
ISBN-13 : 0486134733
Rating : 4/5 (34 Downloads)

Synopsis Partial Differential Equations for Scientists and Engineers by : Stanley J. Farlow

Practical text shows how to formulate and solve partial differential equations. Coverage includes diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Solution guide available upon request. 1982 edition.